As expected, the molecule has a symmetrical cis coordination analogous to that of $\mathrm{Ni}(\mathrm{debd})\left(\mathrm{N}_{3}\right)_{2}$ (Paap et al., 1985). The $\mathrm{Cd}-\mathrm{Cl}$ and the $\mathrm{Cd}-\mathrm{N}$ bonds are comparable with literature values (Cannas, Marongiu \& Saba, 1980; Kleywegt, Wiesmeijer, Van Driel, Driessen, Reedijk \& Noordik, 1985). The pyrazole rings are planar to within $0.02 \AA$. Comparison of the ligand geometry of the title compound with that of $\mathrm{Ni}($ debd $)\left(\mathrm{N}_{3}\right)_{2}$ shows no significant differences between the two. However, the metal coordination spheres differ significantly. The Cd octahedron is more distorted than the Ni octahedron. This can be seen from comparison of the $\mathrm{N}(12)-M-\mathrm{N}\left(12^{\prime}\right)$ angle, which is 151° in the Cd compound and 171° in the Ni compound. The steric constraints of the ligand obviously make it more suitable to accommodate the smaller Ni^{2+} ion (coordination distances $\sim 2.15 \AA$) than the larger Cd^{2+} ion (coordination distances $\sim 2.50 \AA$). On the other hand, the more distorted octahedron is able to accommodate the larger Cl^{-}anions, which do not bind to the smaller ion in combination with the debd ligand.

The authors are indebted to Dr W. F. Hinrichs for the data collection and to Dr R. A. G. de Graaff and Mr B. Kinneging for useful discussions. One of the authors (AE) is indebted to the governments of the Netherlands and Turkey for a fellowship for advanced studies at the State University of Leiden.

References

Cannas, M., Marongiu, G. \& Saba, G. (1980). J. Chem. Soc. Dalton Trans. pp. 2090-2094.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Kleywegt, G. J., Wiesmeler, W. G. R., Van Driel, G. J., Driessen, W. L., Reedijk, J. \& Noordik, J. H. (1985). J. Chem. Soc. Dalton Trans. pp. 2177-2184.
Pafp, F., Driessen, W. L., Reedij, J., Kojić-Prodić, B. \& Spek, A. L. (1985). Inorg. Chim. Acta, 104, 55-62.

Structure of Tris- μ-[bis(8-quinolinolato)hydrogen(I)- N, O - $\mathbf{- d i n i c k e l (I I) ~ T h i o c y a n a t e ~}$ Monohydrate

By Hideko Kiryyama, Yuriko Yamagata* and Kohei Suzuki
Department of Chemistry, Faculty of Science, Kobe University, Nada, Kobe 657, Japan

(Received 11 November 1985; accepted 17 January 1986)

Abstract

Ni}_{2}\left\{\mathrm{H}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{2}\right\rangle_{3}\right](\mathrm{SCN}) \cdot \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=\) 1061.4, monoclinic, $\quad C 2 / c, \quad a=21.269$ (3), $\quad b=$ 15.004 (1), $c=15.481$ (2) $\AA, \quad \beta=101.732$ (9) ${ }^{\circ}, \quad V=$ 4837.2 (9) $\AA^{3}, \quad Z=4, \quad D_{m}=1.47(1), \quad D_{x}=$ $1.46 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Мo $K \alpha)=0.71073 \AA, \mu=0.88 \mathrm{~mm}^{-1}$, $F(000)=2192, T=298 \mathrm{~K}, R=0.045$ for 4747 unique observed reflections. The crystal contains dinuclear cations made up of two Ni complexes joined face to face by three strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds of distances $2.402(2)$ and 2.448 (2) \AA. The counter SCN^{-}is orientationally disordered, its N atom lying on a twofold (2) axis and the remaining C and S atoms each being located on the two sites related by 2 symmetry. A water molecule is hydrogen-bonded to an SCN^{-}ion to form an $\mathrm{O}(W) \cdots \mathrm{N}-\mathrm{C}-\mathrm{S}$ linear array. These dinuclear cations and the disordered, hydrated thiocyanate anions are arranged in the NaCl -type structure.

[^0]0108-2701/86/070785-04\$01.50

Introduction. In previous papers the crystal structures of the novel dimeric nickel 8-quinolinol complexes with triiodide and perchlorate anions were reported (Kiriyama, Fukuda, Yamagata \& Sekido, 1985; Kiriyama, Yamagata, Yonetani \& Sekido, 1986). Both structures contain the unique dinuclear cation in which two nickel complexes with three bidentate 8 -quinolinol ligands in facial conformation are joined face to face by three very strong $\mathrm{O}-\mathrm{H} \ldots \mathrm{O}$ hydrogen bonds. These facts suggest that the hydrogen-bonded dinuclear cations are essential for the nickel 8 -quinolinol complexes in the presence of anions and excess 8 -quinolinol in organic solvents. The present structural study was extended to the corresponding thiocyanate complex. Better crystals were obtained and a more accurate structure determination could be carried out.

Experimental. Yellow nickel(II) chloride (10 mmol in 30 ml of ethanol) and 8 -quinolinol (60 mmol in 30 ml of ethanol) were added to a sodium thiocyanate solution (20 mmol in 200 ml ethanol) dropwise with stirring.

Greenish light-blue crystals were obtained from the filtrate. Density measured by flotation (kerosine-methyl iodide-ethyl iodide mixture); crystal $0.3 \times 0.3 \times$ 0.3 mm ; Rigaku AFC-5 diffractometer, graphitemonochromated Mo $K \alpha$ radiation, $50 \mathrm{kV}-150 \mathrm{~mA}$; unit-cell parameters determined from least squares of setting angles of 50 reflections in 2θ range $20-30^{\circ}$; systematic absences: $h k l$ for $h+k$ odd, $h 0 l$ for l odd, space group $C 2 / c$ or $C c$. Three kinds of reflection pairs within $2 \theta_{\max }=40^{\circ}$ measured, agreement factors between $|F(\pm h k l)|$ and $|F(\pm h-k l)|,|F(\pm h k l)|$ and $|F(\mp h k-l)|$, and $|F(\pm h-k l)|$ and $|F(\mp h k-l)|$ $0.016,0.013$ and 0.013 , respectively, leading to $C 2 / c$. Additional reflections $\quad(h-27 \rightarrow 27, \quad k 0 \rightarrow 19$, $l-20 \rightarrow 20$) within $2 \theta_{\max }=55^{\circ}$ measured, 13354 total reflections, 5560 unique reflections for $C 2 / c$, $R_{\text {int }}=0.024,4757$ with $\left|F_{o}\right|>3 \sigma\left(F_{o}\right)$; standard reflections 280,002 and 600 , intensity variation $<2 \cdot 8 \%$; corrections for Lorentz-polarization and absorption (North, Phillips \& Mathews, 1968), absorption correction factors on F : 1.001-1.081. Structure solved by direct methods (MULTAN78, Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978) and refined by full-matrix least squares on F with anisotropic thermal parameters for non- H atoms; O atom of water, $\mathrm{O}(W)$, and all H atoms except for H atoms of water found in difference Fourier maps, H atoms of 8 -quinolinol included as fixed contributions ($B_{\text {iso }}=5.0 \AA^{2}$), $\mathrm{H}(A)$ and $\mathrm{H}(B)$ of hydroxy groups and $\mathrm{O}(W)$ atom refined isotropically; $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized for 341 parameters. Final $R=0.045, w R=0.036, S=2.04$, $w=1 / \sigma^{2}\left(F_{o}\right) ;(\Delta / \sigma)_{\max }=0.06$; ten reflections with low angles and high intensities removed in final refinement because of possible extinction effects. Highest residual in final difference Fourier synthesis 0.78 e \AA^{-3}. The presence of water molecules of crystallization was judged not only by the X-ray method but also by chemical, thermal and spectroscopic analyses, as described later. Complex neutral scattering factors and anomalous-dispersion terms from International Tables for X-ray Crystallography (1974); computations using programs of The Universal Crystallographic Computing System-Osaka (1979) and their modifications on an ACOS 1000 computer at the Information Processing Center of Kobe University.

Discussion. Final positional and isotropic thermal parameters are listed in Table 1^{*} and selected interatomic distances and angles in Table 2.

The structure analysis showed the stoichiometry of this complex to be $\left[\mathrm{Ni}_{2}\left\{\mathrm{H}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{2}\right\}_{3}\right](\mathrm{SCN}) \cdot \mathrm{H}_{2} \mathrm{O}$,

[^1]Table 1. Final atomic coordinates and isotropic thermal parameters (\AA^{2})

$\boldsymbol{B}_{\mathrm{eq}}=\frac{4}{3} \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
Ni	0.46180 (1)	0.23875 (2)	0.09648 (2)	2.59 (1)
$\mathrm{O}(8 / 8)$	0.46022 (6)	0.13479 (9)	0.18271 (9)	3.03 (2)
$\mathrm{O}(8 B)$	0.42017 (7)	0.31835 (9)	0.17712 (9)	2.94 (2)
$\mathrm{O}(8 C)$	0.55342 (6)	0.28061 (9)	0.16582 (8)	2.90 (2)
$\mathrm{N}(1 A)$	0.37432 (8)	0.17923 (11)	0.04230 (11)	$3 \cdot 16$ (3)
C(2A)	0.3346 (1)	$0 \cdot 1952$ (2)	-0.0332 (2)	4.27 (4)
C(3A)	0.2725 (1)	$0 \cdot 1577$ (2)	-0.0541 (2)	5.66 (5)
C(4A)	0.2514 (1)	0.1077 (2)	0.0062 (2)	5.67 (6)
C(5A)	0.2745 (1)	0.0390 (2)	$0 \cdot 1570$ (2)	5.60 (7)
C(6A)	$0 \cdot 3185$ (1)	0.0223 (2)	0.2329 (2)	$5 \cdot 21$ (5)
$\mathrm{C}(7 A)$	0.3821 (1)	0.0540 (2)	0.2446 (2)	3.99 (4)
C(8A)	0.4003 (1)	$0 \cdot 1045$ (1)	0.1803 (1)	3.03 (3)
C(9,A)	0.3544 (1)	0.1256 (1)	$0 \cdot 1025$ (1)	$3 \cdot 14$ (4)
$\mathrm{C}(10 \mathrm{~A})$	0.2915 (1)	0.0899 (2)	0.0889 (2)	4.33 (5)
$\mathrm{N}(1 B)$	0.44733 (7)	0.35082 (11)	0.01984 (11)	2.70 (2)
C(2B)	0.4603 (1)	0.3638 (1)	-0.0592 (1)	3.40 (3)
C(3B)	0.4461 (1)	0.4451 (2)	-0.1052 (2)	4.07 (4)
C(4B)	0.4191 (1)	0.5123 (2)	-0.0671 (2)	3.89 (4)
C(5B)	0.3766 (1)	0.5675 (1)	0.0624 (2)	$4 \cdot 30$ (5)
$\mathrm{C}(6 \mathrm{~B})$	0.3640 (1)	0.5498 (2)	0.1434 (2)	$4 \cdot 61$ (5)
$\mathrm{C}(7 \mathrm{~B})$	0.3779 (1)	0.4658 (2)	0.1844 (1)	3.74 (4)
C(8B)	0.4059 (1)	0.3998 (1)	0.1438 (1)	2.79 (3)
C(9B)	0.4195 (1)	0.4179 (1)	0.0585 (1)	$2 \cdot 67$ (3)
C(10B)	0.4046 (1)	0.5015 (1)	0.0173 (2)	$3 \cdot 34$ (4)
$\mathrm{N}(1 \mathrm{C})$	0.51993 (8)	$0 \cdot 17429$ (11)	0.02669 (11)	3.02 (3)
C(2C)	0.5019 (1)	0.1226 (2)	-0.0431 (2)	4.00 (4)
C(3C)	0.5461 (1)	0.0845 (2)	-0.0882 (2)	5.01 (4)
C(4C)	0.6099 (1)	0.0995 (2)	-0.0595 (2)	4.77 (5)
C(5C)	0.6962 (1)	0.1715 (2)	0.0512 (2)	$5 \cdot 34$ (6)
$\mathrm{C}(6 \mathrm{C})$	0.7127 (1)	0.2238 (2)	0.1233 (2)	5.41 (6)
C(7C)	0.6656 (1)	0.2624 (2)	0.1648 (2)	3.98 (4)
$\mathrm{C}(8 \mathrm{C})$	0.6018 (1)	0.2461 (1)	0.1316 (1)	2.84 (3)
C(9C)	0.5839 (1)	$0 \cdot 1907$ (1)	0.0565 (1)	$2 \cdot 88$ (3)
$\mathrm{C}(10 \mathrm{C})$	0.6314 (1)	$0 \cdot 1533$ (2)	0.0154 (2)	$3 \cdot 80$ (4)
S*	0.3793 (2)	0.2171 (3)	0.7596 (2)	6.77 (3)
N(11)	0.5000	0.2696 (4)	0.7500	9.11 (9)
C(22)*	0.4503 (3)	0.2460 (4)	0.7492 (4)	5.76 (8)
$\mathrm{O}(\mathrm{W})^{*}$	0.3736 (7)	0.2157 (11)	0.7579 (9)	12.5 (4) \dagger
$\mathrm{H}(A)$	0.500	$0 \cdot 132$ (2)	0.250	7.0 (10) \dagger
$\mathbf{H}(B)$	0.433 (1)	0.299 (2)	0.264 (2)	7.0 (7) \dagger
* Occupancy factors are 0.5. \dagger Isotropic temperature factor.				

the asymmetric unit being one half of it. The complex cation is shown in Fig. $1(a)$ together with the atom-numbering scheme. The coordination of each Ni^{11} atom is a distorted octahedron, where three O atoms and three N atoms of three bidentate 8 -quinolinol ligands occupy the six coordination sites in the facial conformation. Two such facial isomers related by the crystallographic twofold axis form a dinuclear cation joined face to face by three strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Similar dinuclear cations have already been found in the triiodide and perchlorate analogues, in both of which the cations have no crystallographic symmetry. All of these, however, have pseudo 32 symmetry, and no distinct structure differences are found among them. The rotation angles of the two oxygen faces around the pseudo threefold axis are ca 25° for the thiocyanate and triiodide complexes and 30° for the perchlorate complex. One of the two independent bridging H atoms, $\mathrm{H}(A)$, appears to sit on the twofold axis to form a symmetric hydrogen bond, whereas $\mathrm{H}(B)$ is close to $O(8 C)$ rather than $O\left(8 B^{i}\right)$, forming an asymmetric hydrogen bond.

There are significant differences in the $\mathrm{Ni}-\mathrm{N}$ and $\mathrm{Ni}-\mathrm{O}$ distances among the three 8 -quinolinol ligands. The $\mathrm{Ni}-\mathrm{O}(8 C)$ distance is longer by about $0.06 \AA$ than the other $\mathrm{Ni}-\mathrm{O}$ distances, while the $\mathrm{Ni}-\mathrm{N}(1 A)$ distance is longer by about $0.04 \AA$ than the others. The $\mathrm{Ni}-\mathrm{O}$ distances are relatively longer than the $\mathrm{Ni}-\mathrm{N}$ distances. In order to look more closely at the coordination geometry, the $\mathrm{Ni}^{\mathrm{II}}-\mathrm{N}$ (or O) distances in complexes with octahedral coordination of three N and three O atoms were taken from the files of the Cambridge Crystallographic Data Centre (Allen, Bel-

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$
(1) Metal coordinations

$\mathrm{Ni}-\mathrm{N}(1 A)$	$2.080(2)$	$\mathrm{Ni}-\mathrm{O}(8 A)$	$2.058(1)$
$\mathrm{Ni}-\mathrm{N}(1 B)$	$2.045(2)$	$\mathrm{Ni}-\mathrm{O}(8 B)$	$2.054(1)$
$\mathrm{Ni}-\mathrm{N}(1 C)$	$2.043(2)$	$\mathrm{Ni}-\mathrm{O}(8 C)$	$2.120(1)$
$\mathrm{N}(1 A)-\mathrm{Ni}-\mathrm{O}(8 A)$	$78.75(6)$	$\mathrm{N}(1 A)-\mathrm{Ni}-\mathrm{N}(1 B)$	$95.87(7)$
$\mathrm{N}(1 A)-\mathrm{Ni}-\mathrm{O}(8 B)$	$91.94(6)$	$\mathrm{N}(1 A)-\mathrm{Ni}-\mathrm{N}(1 C)$	$99.87(7)$
$\mathrm{N}(1 A)-\mathrm{Ni}-\mathrm{O}(8 C)$	$170.42(6)$	$\mathrm{O}(8 A)-\mathrm{Ni}-\mathrm{N}(1 B)$	$168.33(6)$
$\mathrm{O}(8 A)-\mathrm{Ni} \mathrm{O}(8 B)$	$88.89(5)$	$\mathrm{O}(8 A)-\mathrm{Ni}-\mathrm{N}(1 C)$	$94.34(6)$
$\mathrm{O}(8 A)-\mathrm{Ni}-\mathrm{O}(8 C)$	$91.76(5)$	$\mathrm{N}(1 B)-\mathrm{Ni} \mathrm{O}(8 B)$	$80.90(6)$
$\mathrm{N}(1 B)-\mathrm{Ni}-\mathrm{N}(1 C)$	$96.79(7)$	$\mathrm{N}(1 B)-\mathrm{Ni}-\mathrm{O}(8 C)$	$93.70(6)$
$\mathrm{O}(8 B)-\mathrm{Ni}-\mathrm{N}(1 C)$	$168.15(6)$	$\mathrm{O}(8 B)-\mathrm{Ni}-\mathrm{O}(8 C)$	$89.17(5)$
$\mathrm{N}(1 C)-\mathrm{Ni}-\mathrm{O}(8 C)$	$79.35(6)$		

(2) 8-Quinolinol ligands

	A	B	C
N(1)-C(2)	$1 \cdot 317$ (3)	1.323 (3)	$1 \cdot 322$ (3)
C(2)-C(3)	1.413 (4)	1.412 (3)	1.402 (4)
C(3)-C(4)	1.342 (4)	$1 \cdot 353$ (3)	1.357 (4)
C(4)-C(10)	1.413 (4)	1.411 (3)	1.410 (4)
$\mathrm{C}(5)-\mathrm{C}(10)$	1.408 (4)	1.413 (3)	1.405 (4)
C(5)-C(6)	1.369 (4)	1.360 (4)	1.351 (4)
C(6)-C(7)	1.410 (4)	1.416 (4)	1.418 (4)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.370 (3)	1.373 (3)	1.373 (3)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.423 (3)	1.434 (3)	1.418 (3)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.416 (3)	1.414 (3)	1.414 (3)
$\mathrm{C}(9)-\mathrm{N}(1)$	$1 \cdot 363$ (3)	1.365 (3)	1.367 (3)
$\mathrm{C}(8)-\mathrm{O}(8)$	$1 \cdot 346$ (3)	$1 \cdot 338$ (2)	1.352 (2)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(9)$	118.9 (2)	119.2 (2)	119.0 (2)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	122.1 (2)	122.0 (2)	122.3 (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.5 (3)	119.3 (2)	119.7 (3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)$	$120 \cdot 6$ (3)	120.7 (2)	120.0 (3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	120.4 (3)	120.1 (2)	$120 \cdot 6$ (3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	121.3 (3)	121.7 (2)	121.5 (3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120.0 (2)	120.5 (2)	119.6 (2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	119.4 (2)	118.3 (2)	119.4 (2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.5 (2)	121.0 (2)	120.4 (2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{N}(1)$	122.5 (2)	122.2 (2)	122.0 (2)
C(9)-C(10)-C(4)	116.2 (2)	116.6 (2)	117.1 (2)
C(9)-C(10)-C(5)	118.3 (2)	118.5 (2)	118.5 (2)
$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(5)$	125.5 (3)	124.9 (2)	124.4 (2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(1)$	117.0 (2)	116.8 (2)	117.7 (2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(8)$	125.0 (2)	124.6 (2)	124.0 (2)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{O}(8)$	115.6 (2)	117.1 (2)	$116 \cdot 6$ (2)
(3) Hydrogen bonds			
$\mathrm{O}(8 A)-\mathrm{O}\left(8 A^{\text {i }}\right.$)	$2 \cdot 402$ (2)	$\mathrm{O}(8 C)-\mathrm{O}\left(8 B^{\text {i }}\right.$)	2.448 (2)
$\mathrm{O}(8 A)-\mathrm{H}(A)$	1.20 (1)	$\mathrm{O}(8 C)-\mathrm{H}(B)$	$1 \cdot 10$ (3)
$\mathrm{O}\left(8 B^{\prime}\right)-\mathrm{H}(B)$	$1 \cdot 35$ (3)		
$\mathrm{O}(8 A)-\mathrm{H}(A)-\mathrm{O}\left(8 A^{\prime}\right)$	177 (1)	$\mathrm{O}(8 \mathrm{C})-\mathrm{H}(B)-\mathrm{O}\left(8 B^{\mathrm{i}}\right)$	176 (2)
$\mathrm{C}(8 A)-\mathrm{O}(8 A)-\mathrm{Ni}$	112.2 (1)	$\mathrm{C}(8 A)-\mathrm{O}(8 A)-\mathrm{O}\left(8 A^{j}\right)$	121.4 (1)
$\mathrm{Ni}-\mathrm{O}(8 A)-\mathrm{O}\left(8 A^{\mathrm{i}}\right)$	117.5 (1)	$\mathrm{C}(8 B)-\mathrm{O}(8 B)-\mathrm{Ni}$	112.9 (1)
$\mathrm{C}(8 B)-\mathrm{O}(8 B)-\mathrm{O}\left(8 C^{\text {i }}\right.$	125.7 (1)	$\mathrm{Ni}-\mathrm{O}(8 B)-\mathrm{O}\left(8 C^{\mathrm{i}}\right)$	115.4 (1)
$\mathrm{C}(8 C)-\mathrm{O}(8 C)-\mathrm{Ni}$	112.5 (1)	$\mathrm{C}(8 C)-\mathrm{O}(8 C)-\mathrm{O}\left(8 B^{\text {i }}\right.$)	116.0 (1)
$\mathrm{Ni}-\mathrm{O}(8 \mathrm{C})-\mathrm{O}\left(8 B^{\mathrm{l}}\right)$	125.0 (1)		
(4) SCN^{-}ions			
S-C	1.610 (8)	C-N	$1 \cdot 112(7)$
$\mathrm{N}-\mathrm{O}(W)$	2.83 (2)		
$\mathbf{S}-\mathrm{C}-\mathrm{N}$	173.1 (6)		

[^2]lard, Brice, Cartwright, Doubleday, Higgs, Hummelink, Hummelink-Peters, Kennard, Motherwell, Rodgers \& Watson, 1979). The $\mathrm{Ni}-\mathrm{N}$ and $\mathrm{Ni}-\mathrm{O}$ distances averaged for 18 independent octahedra are 2.09 (4) and 2.09 (4) \AA, respectively. Slight, but significant deviations are found between $\mathrm{Ni}-\mathrm{N}\left[-\mathrm{NH}_{2}\right.$, $2.10(2) \AA$] and $\mathrm{Ni}-\mathrm{N}[>\mathrm{N}, 2.07$ (6) \AA] and between $\mathrm{Ni}-\mathrm{O}\left[-\mathrm{O}^{-}, 2.06\right.$ (3) $\left.\AA\right]$ and $\mathrm{Ni}-\mathrm{O}$ [O(water), $2 \cdot 10(6),=0,2.09$ (2) $\AA]$ distances. These observations seem to be consistent with the present results, i.e. the $\mathrm{Ni}-\mathrm{O}(8 \mathrm{C})$ distance may reflect the close approach of the $\mathrm{H}(B)$ atom to $\mathrm{O}(8 C)$, and the shortening of the $\mathrm{Ni}-\mathrm{N}$ bonds relative to the $\mathrm{Ni}-\mathrm{O}$ bonds may be associated with the electron-rich N atoms in the aromatic ring.

The C and N atoms in each 8-quinolinol ligand lie close to a plane with the maximum deviation

(a)

(b)

Fig. 1. (a) ORTEP drawing (Johnson, 1976) of the $\left\{\mathrm{Ni}_{2}\left\{\mathrm{H}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{2}\right\}_{3}\right]^{+}$cation with atom-numbering scheme. Thermal ellipsoids are shown at the 50% probability level; (b) mean interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for the 8 quinolinol ligands.
0.056 (3) \AA while the O atoms deviate slightly from these planes $[0.179$ (3) \AA for $\mathrm{O}(8 A), 0.036$ (2) \AA for $\mathrm{O}(8 B)$ and 0.046 (2) \AA for $\mathrm{O}(8 C)]$. The corresponding bond lengths and angles in the three ligands are in close agreement with each other (Table 2). The mean distances and angles are illustrated in Fig. 1(b). These values, except for those for $\mathrm{C}-\mathrm{O}$, are consistent with those averaged for five 8 -quinolinolato ligands found in the literature whose structures have been determined with high precision (Scheidt, 1973; Hanson \& Hughes, 1981; Giacomelli, Floriani, Duarte, Chiesi-Villa \& Guastini, 1982). The C-O distances [1.338 (2)1.352 (2) \AA] are somewhat longer than the mean values of 1.331 (6) \AA in the 8 -quinolinolate ions, possibly owing to the formation of very short $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. These results suggest that the exocyclic $\mathrm{C}-\mathrm{O}$ bonds have little effect on quinoline-ring bonds, therefore the observed distances may be typical for the quinoline ring system of 8 -quinolinol.
The overall crystal structure is quite similar to that of the triiodide complex in that the dinuclear cations and SCN^{-}anions (instead of I_{3}^{-}ions) are in the alternate arrangement analogous to the NaCl structure, as shown in Fig. 2 (Kiriyama et al., 1985). In this crystal, however, the nearly linear SCN^{-}counteranion is disordered, possibly owing to its shorter length $2.72 \AA$ compared with the $\mathrm{I}(1)-\mathrm{I}(2)-\mathrm{I}(3)$ distance $5.82 \AA$. The C and S atoms each lie on two sites related by the twofold axis with equal population, centered at the N atom lying on this symmetry axis. The water molecule is hydrogen-bonded to an adjacent SCN^{-}ion and consequently the linear $\mathrm{O}(W) \cdots \mathrm{NCS}^{-}$group is also orientationally disordered. The $\mathrm{O}(W) \cdots \mathrm{S}$ distance $5.32 \AA$ is comparable to the $I(1) \cdots I(3)$ distance in the triiodide analogue. The structure is mainly achieved by electrostatic and van der Waals interactions. The two kinds of intermolecular $\mathrm{S} \cdots \mathrm{H}$ distance [$\mathrm{S} \cdots \mathrm{H}(\mathrm{C} 2 A)$, $2.66 \AA$ and $\mathrm{S} \cdots \mathrm{H}(\mathrm{C} 6 \mathrm{C}), 2.77 \AA$] are considerably shorter than the sum of the van der Waals radii $3.0 \AA$

Fig. 2. Stereodrawing of the crystal structure viewed along the b axis. Only one orientation of the disordered, hydrated $\mathrm{SCN}^{-} \cdots \mathrm{O}(W)$ ion is shown for simplicity.
(Bondi, 1964), suggesting weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds. Such intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions are rarely observed in crystals (Taylor \& Kennard, 1982).

The present X-ray analysis showed that the crystal is a monohydrate. Other evidence is as follows: (1) The measured density agrees well with that calculated for a monohydrate rather than that for an anhydrate. (2) Chemical analyses: found: C 62.21, H 3.99 , N 9.25%; calc. for the anhydrate: C $63.31, \mathrm{H} 3.77$, N 9.40%; calc. for the monohydrate: C $62 \cdot 24, \mathrm{H} 3 \cdot 89$, N $9 \cdot 24 \%$. (3) IR spectra: antisymmetric stretching band 3650 and $3300 \mathrm{~cm}^{-1}$, the former assignable to free $\mathrm{O}-\mathrm{H}$ groups and the latter to hydrogen-bonded $\mathrm{O}-\mathrm{H}$ groups of water molecules; the broad band at $1620 \mathrm{~cm}^{-1}$ accompanied by a quite broad shoulder centering at about $1680 \mathrm{~cm}^{-1}$; the absorption at $1620 \mathrm{~cm}^{-1}$ assigned to the stretching mode of the very strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, because it commonly occurs in all the three complexes concerned; the broad shoulder superimposed near $1680 \mathrm{~cm}^{-1}$ attributable to the bending mode of water molecules. (4) Thermal analyses: TG and DTA, an endothermic anomaly is observed between 308 and 428 K , the attendant weight loss corresponds to the gradual liberation of one water molecule per chemical formula.

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education of Japan (No. 59470035).

References

Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., HummelinkPeters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson, D. G. (1979). Acta Cryst. B35, 2331-2339.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Giacomelli, A., Florianl, C., Duarte, A. O. S., Chiesi-Villa, A. \& Guastin, C. (1982). Inorg. Chem. 21, 3310-3316.

Hanson, I. R. \& Hughes, D. L. (1981). J. Chem. Soc. Dalton Trans. pp. 390-399.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71-151. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Kiriyama, H., Fukuda, T., Yamagata, Y. \& Sekido, E. (1985). Acta Cryst. C41, 1441-1444.
Kiriyama, H., Yamagata, Y., Yonetani, K. \& Sekido, E. (1986). Acta Cryst. C42, 56-60.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Scheidt, W. R. (1973). Inorg. Chem. 12, 1758-1761.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 102, 5063-5070.
The Universal Crystallographic Computing System-Osaka (1979). The Computation Center, Osaka Univ.

[^0]: * Present address: Faculty of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565, Japan.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and calculations of least-squares planes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42770 (36 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: Symmetry code: (i) $-x, y, \frac{1}{2}-z$.

